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Why use a mirror to assess visual pursuit in @
prolonged disorders of consciousness?
Evidence from healthy control participants

Damian Cruse'’, Marco Fattizzo?, Adrian M. Owen® and Davinia Ferndndez-Espejo’

Abstract

Background: Evidence of reliable smooth visual pursuit is crucial for both diagnosis and prognosis in prolonged
disorders of consciousness (PDOC). However, a mirror is more likely than an object to elicit evidence of smooth
pursuit. Our objective was to identify the physiological and/or cognitive mechanism underlying the mirror benefit.

Methods: We recorded eye-movements while healthy participants simultaneously completed a visual pursuit task
and a cognitively demanding two-back task. We manipulated the stimulus to be pursued (two levels: mirror, ball)
and the simultaneous cognitive load (pursuit only, pursuit plus two-back task) within subjects.

Results: Pursuit of the reflected-own-face in the mirror was associated with briefer fixations that occurred less
uniformly across the horizontal plane relative to object pursuit. Secondary task performance did not differ between
pursuit stimuli. The secondary task also did not affect eye movement measures, nor did it interact with pursuit stimulus.

Conclusions: Reflected-own-face pursuit is no less cognitively demanding than object pursuit, but it naturally
elicits smoother eye movements (i.e. briefer pauses to fixate). A mirror therefore provides greater sensitivity to
detect smooth visual pursuit in PDOC because the naturally smoother eye movements may be identified more

confidently by the assessor.
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Background
Visual pursuit of a moving object signifies the transition
from unawareness to awareness in prolonged disorders of
consciousness (PDOC) — i.e. from vegetative state to min-
imally conscious state [1]. Accurate differential diagnosis
is crucial in PDOC because treatment decisions may be
influenced by differences in likelihood of functional recov-
ery that are associated with each diagnostic group [2, 3].
Two recent studies found that visual pursuit is signifi-
cantly more likely to be observed in PDOC when the
stimulus to be pursued is the patient’s own face reflected
in a mirror, relative to when the stimulus is an object or
person. [4, 5]. The cause of this effect is unclear,
although it has been hypothesised that the patient’s own
face is more likely to attract the gaze as it is a salient
and auto-referential stimulus [4, 5]. This hypothesis,
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however, presumes that reflected-own-face pursuit in-
dexes consciousness to the same extent as object
pursuit. In other words, a patient who only pursues
their reflected-own-face, and not an object, is consid-
ered to be conscious to the same clinical level as a
patient who pursues both. Any difference in pursuit
behaviour between these two patients is considered to
stem from an attention deficit that can be overcome
with a sufficiently salient stimulus [4, 5].

However, extremely highly learned stimuli, such as one’s
own name or own face, can elicit complex responses in
the absence of awareness. For example, one’s own name is
subjected to complex neural processing even during non-
REM sleep — a period in which an individual is demon-
strably unaware [6]. Furthermore, the brain’s electro-
physiological response differentiates one’s own-face from
faces of others even when the individual is unaware of
having seen a face at all [7]. An alternate interpretation,
therefore, is that processing of high relevance stimuli, such
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as pursuit of one’s own reflected face, may be less reliant
on overt consciousness than processing of less salient
stimuli, such as pursuit of an object. In other words, is
reflected-own-face pursuit less demanding than object
pursuit, thus allowing patients with lower cognitive
abilities, or even lower levels of consciousness, to ex-
hibit reliable pursuit? This interpretation has important
implications for diagnoses achieved through responses
to high relevance stimuli, such as own-face and own-
name [8—10]. A further alternative physiological inter-
pretation for the difference in pursuit behaviour is that
conscious patients are actively attempting to pursue
both stimuli, but that the eye movements during
reflected-own-face pursuit are naturally smoother and
therefore easier for an assessor to identify confidently.
To test these hypotheses, we asked a group of healthy
participants to separately pursue an object and their re-
flection in a mirror while completing a challenging sec-
ondary task designed to reduce the cognitive resources
available for smooth pursuit. If reflected-own-face pursuit
does not draw on conscious resources to the same extent
as object pursuit, we would predict differential perform-
ance on the secondary task and on measures of smooth
pursuit, quantified via a head-mounted eye-tracker.

Methods

Participants

We recruited 25 participants from the research pool of
the University of Western Ontario (UWO). All partici-
pants reported normal vision and were compensated
with course credit. We excluded data from 8 participants
due to hardware malfunction (7 = 3) or chance-level task
performance (1 =5), leaving 17 participants (median age:
18-years, range 18-23). The Research Ethics Board of
UWO approved this study.

Equipment

A robot arm repeatedly moved objects through 90° on
the horizontal plane ~30-cm in front of the participant’s
eyes (45° either side of forward-facing; manufactured by
Bonneville Scientific Inc., Salt Lake City, Utah, USA).
One full oscillation lasted 10-s. An Eyelink II (SR Research
Ltd, Mississauga, Ontario, Canada) tracked the move-
ments of the left-eye (sample rate: 500-Hz; Fig. 1). The ex-
perimenter recalibrated the eye-tracker prior to each trial.
The object stimulus (a ball) was mounted to the back of
the mirror at the end of the robot arm, and the appropri-
ate stimulus turned to face the participant on each trial.
This ensured that the size of the moving portion of the
arm was consistent across stimulus conditions. Prior to
completion of mirror trials, the experimenter ensured that
the mirror was placed in such a way that the participant
could see the reflection of their face throughout the robot
arm’s range of movement.
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Fig. 1 Experimental setup including eye-tracker, robot arm, and ob-
ject to be pursued

Cognitive task

To increase cognitive load while participants pursued
the stimuli, we developed a two-back category-matching
task. Participants heard a series of spoken letters (3-s
onset asynchrony) and indicated via button press
whether or not each item was from the same category
as that two items previously. Five letters that contain
horizontal lines when written in their capital form
comprised one category (E, F, H, L, T) and five that did
not (V, W, X, Q, S) comprised the other. Such an
orthographic comparison task was hypothesised to tax
visual processing and interfere with pursuit demands.
A pseudo-random series of 90 letters (22 matches) was
created per trial.

Design and procedure

Participants completed four trials from a two-by-two de-
sign — two stimuli (mirror, ball) x two levels of cognitive
load (pursuit only, pursuit plus two-back) — in counter-
balanced order. Prior to the experiment, participants
completed a practice two-back task until they under-
stood the procedure. Participants were instructed to
smoothly pursue the moving stimuli with their eyes
without moving their head. Each trial lasted 4.5-min
followed by a brief rest.

Analyses

To rule out potential task non-compliance, we excluded
those participants with chance performance on either
trial. Specifically, we shuffled the recorded button
presses within trials and calculated the corresponding
discrimination value (p[hit] minus p[false alarm] [11]),
thus controlling for response biases. We performed this
procedure 1000 times, creating a distribution under the
null hypothesis that discrimination was not different
from chance. Participants with discrimination within the
lower 95% of the surrogate distribution (i.e. p >.05) were
excluded from analyses (conducted with MATLAB).



Cruse et al. BVIC Neurology (2017) 17:14 Page 3 of 5

Frequentist and equivalent Bayesian comparisons with ~ model was preferred relative to the null model (all JZS-
default priors were conducted with JASP Version BF;,<.506).
0.7.1.12 [12, 13]. Specifically, to complement the t-tests, A further ANOVA on average durations of fixation
the Jeffrey-Zellner-Siow Bayes factor (JZS-BFjy) tested with the same factors revealed a significant effect of
the strength of the evidence for each observed effect size  stimulus (F(1,16) = 15.763, p =.001), a marginal effect of
[14]. A JZS-BF;, ANOVA approach contrasted the load (F(1,16)=3.294, p =.088), and no significant inter-
strength of evidence for models reflecting the null, main  action (F(1,16) =.718, p =.409). A Bayesian equivalent
effects, and interaction [15]. A JZS-BF;, between 1/3 indicated greater evidence for an effect of stimulus only,
and 3 is considered to be only weak/anecdotal evidence relative to all other models (JZS-BF;q=121.430 relative
for an effect; 3—10: substantial evidence; 10-100: strong  to null). See Fig. 2a.
evidence; >100: very strong evidence [16]. The same cat-

egory descriptions hold for the inverse. Post-hoc analyses

During data quality checks, we noticed a qualitative dif-
Results ference in the spatial distribution of fixations (Fig. 2b).
Cognitive task Specifically, fixations during object pursuit occurred

Discrimination did not significantly differ between pursuit  relatively uniformly across the tracking space, while fixa-
stimuli in a paired samples t-test (t(16) =.330, p =.746). A tions during reflected-own-face pursuit occurred mostly
Bayesian equivalent indicated substantial evidence in  when the mirror changed direction. To quantify this dif-
favour of the null hypothesis (JZS-BF;o=.261). Mean re- ference, we conducted the following post-hoc analysis.
action time did not significantly differ between pursuit First, we removed outlier fixations (>2 standard deviations
stimuli in a paired samples t-test (t(16) =.866, p =.399). A from mean horizontal or vertical coordinates). Next, we
Bayesian equivalent indicated marginally more evidence scaled the X-coordinates of fixations to be between 0 and

for the null hypothesis (JZS-BF; = .346). 1, and tested this distribution against a uniform distribu-
tion (Chi-square goodness of fit, 10-bins). An ANOVA on
Fixations the log-normalised Chi-square statistics with the same fac-

A two-way repeated measures ANOVA on numbers of tors as above revealed a significant effect of stimulus only
fixations with factors of stimulus (ball, mirror) and cog-  (F(1,16) = 14.299, p =.002; load: F(1,16)=.310, p =.585;
nitive load (pursuit only, pursuit plus two-back) revealed interaction: F(1,16) <.001, p = .982). A Bayesian equivalent
a marginal effect of load only (F(1,16) =4.486, p =.050; revealed substantial evidence for the model containing
stimulus: F(1,16) = .053, p = .821; interaction: F(1,16) =.004,  only the factor of stimulus relative to all other models (all
p=.948). A Bayesian equivalent indicated that no JZS-BF10>3.735).
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Fig. 2 a Fixation behaviour across trials. Bars show 95% confidence intervals. b Single-subject distributions of fixations across trials. Each row of

each panel shows data from one participant separated into ten bins across the horizontal plane of pursuit. Right-hand images highlight greater
foci of fixations at the tails during reflected-own-face pursuit
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Discussion

Our data indicate that pursuit of one’s own face reflected
in a mirror is no less cognitively demanding than pursuit
of an object, and therefore that both stimuli tap similar
diagnostically important abilities in PDOC. Indeed, a
Bayesian analysis indicates substantial evidence in favour
of no differences in secondary task performance during
reflected-own-face or object-pursuit.

Eye-tracking indicates that reflected-own-face pursuit
is naturally smoother than object pursuit, and may
therefore be less likely to be missed or confused with ir-
relevant staccato eye movements (e.g. nystagmus). Indeed,
the data provide very strong evidence for significantly
shorter mean eye fixations during reflected-own-face pur-
suit, which we interpret as a sign of smoother pursuit be-
cause the eyes do not take long pauses to fixate. Fixations
also occur more uniformly across the space of object
pursuit, consistent with less smooth pursuit.

While it is possible that the eye movements of healthy
participants reported here do not generalise to PDOC, re-
cent eye-tracking evidence suggests generalisability between
patients and healthy controls [17]. We cannot rule out the
possibility that a more demanding secondary task will have
an effect on our measures of smooth pursuit, unlike the
two-back task we employed here. However, even if this
were the case, it is unlikely that the interaction between
task performance and pursuit stimulus would be borne out,
as indicated by the strong evidence against interaction
models in our data (number of fixations: interaction
JZS-BF,, = .040; duration of fixations: interaction JZS-
BFo = .404; relative to model with highest evidence). We
therefore conclude that the cognitive demands of reflected-
own-face pursuit and object pursuit are comparable.

These data provide further support for the use of a
mirror in clinical assessments of awareness [4, 10]. It has
been suggested that the greater sensitivity of the reflected-
own-face stimulus stems from its higher salience and
subsequent auto-referential processing — i.e. self-awareness
[4, 5]. Indeed, there is evidence that autonomic responses
to own-face photographs in the minimally conscious state
are more similar to healthy individuals, while the auto-
nomic response of patients in the vegetative state fails to
differentiate between own-face and control stimuli [18].
Nevertheless, open questions remain regarding the subject-
ive experience of patients who pursue their reflected own-
face: does reflected-own-face pursuit index a simultaneous
subjective experience of self-awareness on the part of the
patient? Contemporary advances in brain imaging and
physiological recordings may provide some insight into this
question. Regardless, our data are consistent with the view
that visual pursuit of reflected-own-face in PDOC is evi-
dence of a similar level of consciousness and cognition to
that identified by object pursuit, and therefore is a more
appropriate method in clinical assessment.
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Conclusions

Our data provide substantial evidence that a mirror
provides greater sensitivity to detect visual pursuit in
patients with PDOC not because reflected-own-face
pursuit is a less complex ability, but because the mirror
naturally elicits smoother eye movements that can be
identified more confidently by the assessor. These
smoother and more reliable eye movements may be
driven by the self-referential nature of the reflected-
own-face stimulus, although further research is needed
to appropriately characterise the relationship with sub-
jective self-awareness.
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